DP-100 - Designing and Implementing a Data Science Solution on Azure
The Azure Data Scientist applies their knowledge of data science and machine learning to implementing and running machine learning workloads on Microsoft Azure; in particular, using Azure Machine Learning Service. This entails planning and creating a suitable working environment for data science workloads on Azure, running data experiments and training predictive models, managing and optimizing models, and deploying machine learning models into production.
Level
Designed for participants with basic knowledge and experience
This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud.
Course content
Module 1: Getting Started with Azure Machine Learning
In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace.
Lessons
Introduction to Azure Machine Learning
Working with Azure Machine Learning
Lab : Create an Azure Machine Learning Workspace
Module 2: No-Code Machine Learning
This module introduces the Automated Machine Learning and Designer visual tools, which you can use to train, evaluate, and deploy machine learning models without writing any code.
Lessons
Automated Machine Learning
Azure Machine Learning Designer
Lab : Use Automated Machine Learning
Lab : Use Azure Machine Learning Designer
Module 3: Running Experiments and Training Models
In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models.
Lessons
Introduction to Experiments
Training and Registering Models
Lab : Run Experiments
Lab : Train Models
Module 4: Working with Data
Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments.
Lessons
Working with Datastores
Working with Datasets
Lab : Work with Data
Module 5: Working with Compute
One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs.
Lessons
Working with Environments
Working with Compute Targets
Lab : Work with Compute
Module 6: Orchestrating Operations with Pipelines
Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module.
Lessons
Introduction to Pipelines
Publishing and Running Pipelines
Lab : Create a Pipeline
Module 7: Deploying and Consuming Models
Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing.
Lessons
Real-time Inferencing
Batch Inferencing
Continuous Integration and Delivery
Lab : Create a Real-time Inferencing Service
Lab : Create a Batch Inferencing Service
Module 8: Training Optimal Models
By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data.
Lessons
Hyperparameter Tuning
Automated Machine Learning
Lab : Tune Hyperparameters
Lab : Use Automated Machine Learning from the SDK
Module 9: Responsible Machine Learning
Data scientists have a duty to ensure they analyze data and train machine learning models responsibly; respecting individual privacy, mitigating bias, and ensuring transparency. This module explores some considerations and techniques for applying responsible machine learning principles.
Lessons
Differential Privacy
Model Interpretability
Fairness
Lab : Explore Differential provacy
Lab : Interpret Models
Lab : Detect and Mitigate Unfairness
Module 10: Monitoring Models
After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data.
Lessons
Monitoring Models with Application Insights
Monitoring Data Drift
Lab : Monitor a Model with Application Insights
Lab : Monitor Data Drift
Materials
Materials are in electronic form.
Objectives
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring with Azure Machine Learning and MLflow.
Do you want thistailor-made course for your company?
Microsoft Power BI is a powerful platform for data analysis and visualization. You can easily connect all the company's data sources to it, no matter where they are or in any format. In a user-friendly environment, it creates interactive visualizations that bring data to life and facilitate the recognition of trends and insights.
We took a closer look at Microsoft Azure certifications, also known as AZ. Microsoft's certification map is extensive and at first glance it may not be easy to understand it. That's why we're here to help you with that.
It's important for administrators to understand the interconnectedness and the strength of the entire platform. A conversation with lecturer Matyáš Koc, a certified Microsoft solutions trainer.
Microsoft Power BI is a powerful platform for data analysis and visualization. You can easily connect all the company's data sources to it, no matter where they are or in any format. In a user-friendly environment, it creates interactive visualizations that bring data to life and facilitate the recognition of trends and insights.
We took a closer look at Microsoft Azure certifications, also known as AZ. Microsoft's certification map is extensive and at first glance it may not be easy to understand it. That's why we're here to help you with that.
It's important for administrators to understand the interconnectedness and the strength of the entire platform. A conversation with lecturer Matyáš Koc, a certified Microsoft solutions trainer.